Conclusion

Nous avons montré que l'erreur systématique apportée par la dérive de la source ne peut être corrigée sans introduire une erreur aléatoire due à la fluctuation quantique du flux moniteur.

Nous constatons une fois de plus l'antagonisme de ces deux types d'erreur. Comme nous l'avions déjà signalé (Tournarie, 1958) comme étant un cas général, l'erreur minimale s'obtient par une correction non pas totale, mais seulement partielle de l'erreur systématique. Nous pensons donc que les systèmes de comptage doivent comprendre trois éléments:

une base de temps ; un compteur de flux diffusé ; un compteur de flux moniteur .

Références

SCHIFF, L.I. (1936) Phys. Rev. 50, 88.
TOURNARIE, M.(1958). Actes du 2ème congrés international de Cybernétique, Namur.
WESCOTT, C.H. (1948). Proc. Roy. Soc. A 194

Acta Cryst. (1970). A26, 336

X-ray and Neutron Diffraction Study of Tetragonal Barium Titanate

By J. HARADA,* T. PEDERSEN AND Z. BARNEA

School of Physics, University of Melbourne, Australia

(Received 10 June 1969)

An attempt is made to differentiate between the three previously proposed models of the structure of tetragonal BaTiO₃. In the new model, the serious parameter-interaction problem was avoided by the use of both neutron and X-ray diffraction data collected from *c*-domain single crystals. The result of the refinement gave the displacement of the Ti atom from its cubic position as 0.0135 ± 0.0004 Å; the *R* value was 0.027 and 0.024 for the neutron and X-ray data respectively. The analysis also showed that the temperature parameters, B_{33} , along the *c* axis are approximately independent of mass; $B_{33}=0.32\pm 0.03$ Å² from X-ray and 0.33 ± 0.04 Å² from neutron diffraction. The average value obtained for the $\overline{B_{11}}$ temperature parameters, $\overline{B_{11}}=0.50$ Å², is considerably higher than the B_{33} value, which thus clearly indicates the existence of low frequency optic modes at room temperature.

Introduction

Below its ferroelectric Curie temperature (120°C) BaTiO₃ has tetragonal symmetry with the space group P4mm (C_{4v}). In this ferroelectric phase, the atoms are shifted from the symmetry positions of the cubic perovskite-type structure along the c axis by small amounts Δz . The exact values of these are very difficult to determine because of the large interaction between the position and temperature parameters along the tetragonal axis. This has been shown by Evans (1951, 1961) who in an attempt to solve the structure by X-ray diffraction proposed two models both of which fitted his experimental data equally well with a reliability index R of about 0.037. The problem has also been investigated by Frazer, Danner & Pepinsky (1955) and Danner, Frazer & Pepinsky (1960) using neutron diffraction and they obtained a third model, intermediate between the two previous models. Three different models of the structure have thus been proposed.

In the neutron diffraction experiment the crystal was equipped with electrodes to permit unidirectional domain alignment by an electric field. Because of the piezoelectricity of tetragonal BaTiO₃, application of an electric field to the crystal will cause the crystal to become strained. The amount of deformation would be extremely small (Kittel, 1963). The effect of the electric field on the temperature parameters, however, is not yet clear. We have therefore collected both neutron and X-ray diffraction data using free, c-domain crystals without electrodes.

In this paper an attempt has been made to differentiate between the three previously proposed models in the light of our data. We also show that it is possible to obtain a model which is in good agreement with both neutron and X-ray data, provided certain initial assumptions are made about the temperature factors.

Experiment

Barium titanate crystals grown at the Matsushita Electric Industry Co. Ltd. by Remeika's method were used in the investigation. Suitable *c*-domain single crystals were chosen with the aid of a polarizing microscope.

^{*} A.I.N.S.E. Research Fellow, on leave from Department of Physics, Tokyo Institute of Technology, Tokyo, Japan. Present address: Physics Department, Brookhaven National Laboratory, N.Y., U.S.A.

X-ray diffraction

The BaTiO₃ crystal used in the X-ray measurements was triangular in shape, of area 27.2 mm² and 0.7 mm thick. The crystal was mounted on an XRD-6 General Electric single-crystal diffractometer in such a way that the c axis was always horizontal and parallel to the φ axis. Rotation about the φ axis combined with rotation about the ω axis made it possible to observe up to eight equivalent reflexions of type *hkl* with small *h* and *k* and large *l*. The direct (Mo $K\alpha$) beam was completely intercepted by the crystal. Balanced (Zr-Y₂O₃) filters placed in the diffracted beam were used in conjunction with a scintillation counter and pulse-height analyser. Integrated intensities were obtained using a θ -2 θ scan. The measurements were carried out at 28 ± 2 °C.

Fifty-four independent reflexions were observed. Except for the 00/ reflexions, two to eight equivalent reflexions were measured in each case. Agreement between equivalent reflexions was, with a few exceptions, found to be within about 1%.

Lorentz and polarization corrections were applied to the intensities which were also corrected for absorption by the skew-correction formula (*International Tables for X-ray Crystallography*, 1959). It should be noted that for relative intensities this correction is only geometrical and independent of the absorption coefficient.

Extinction effects were not evident in our data. This is ascribed to the fact that because of the high absorption of BaTiO₃ only a small mosaic surface layer contributed to the diffracted intensity. However, hk0 data collected by transmission through a very thin crystal exhibited considerable extinction and were therefore not used in the structure analysis.

Neutron diffraction

Two specimens were used. Specimen C4 was a platelet 27 mm² in area and 0.16 mm thick; specimen CJ was a platelet 52.6 mm^2 in area and 0.16 mm thick.

Integrated intensities were measured on the 4H2 full-circle single-crystal diffractometer at the HIFAR reactor of the Australian Atomic Energy Commission at Lucas Heights. The flux of the incident beam was $10^{4}-10^{5}$ neutrons cm⁻² sec⁻¹ with a mean wavelength of 1.10 Å. The step-by-step $\theta-2\theta$ scan was carried out in a range of about 6° (2θ).

Absorption and Lorentz corrections were applied to the intensities by the *CDRABS* AAEC computer program. Three equivalent reflexions were usually measured in the case of crystal C4 and four for crystal CJ. Agreement between equivalent reflexions was about 4%. Reproducibility of a standard reflexion was better than 2%. The data were obtained at a temperature of 22 ± 2 °C.

The agreement between the two sets of intensity data was very good for the weak reflexions but not for the strong. Comparison of structure factors indicated that the disagreement in the case of the strong reflexions was due to extinction. An interesting point to note is that the two crystals which were grown in different batches exhibited different anisotropy of extinction. Although strong reflexions with extinction were rejected, we could use a total of 78 non-equivalent reflexions from the two crystals for our refinement. Calculations using Zachariasen's (1963) expression for extinction correction showed that the effect of extinction on the weak reflexions was less than the experimental error and could therefore be ignored (average extinction coefficient C=0.3).

Computation

The structure analysis was carried out on an IBM 7044 computer using the full-matrix least-squares *ORFLS* program (Busing, Martin & Levy, 1962).

In all the calculations Dirac–Slater scattering factors (Cromer & Waber, 1965) were used for X-rays and the following neutron scattering lengths:

$b(Ba) = 0.528 \times 10^{-12}$ cm (Brookhaven National Labor-
atory, 325, 1966)
$b(\text{Ti}) = -0.36 \times 10^{-12} \text{ cm}^*$
$b(O) = 0.580 \times 10^{-12}$ cm (Brookhaven National Labor-
atory, 325, 1968)

Weighting scheme

Attempts to arrive at a weighting scheme for the Xray data on the basis of statistical errors and observed differences between equivalent reflexions indicated that neither of these sources of error could fully account for the discrepancies between the observed and calculated structure factors, and that the discrepancies must be attributed to other sources of error (in the subtraction of background, contribution due to simultaneous reflexions and thermal diffuse scattering (TDS) effects. Unit weights were therefore employed.

For the neutron diffraction data, the weighting scheme was based on the discrepancies between equivalent reflexions, these being larger than the statistical errors.

Previous models

The unit cell of tetragonal BaTiO₃ has dimensions a=3.9945 and c=4.0335 Å (Rhodes, 1949) and contains one formula unit of BaTiO₃ with atoms in the following locations:

Ba in (a): 0,0,0 selected origin Ti in (b): $\frac{1}{2}, \frac{1}{2}, \frac{1}{2} + \Delta z_{Ti}$ O(1) in (b): $\frac{1}{2}, \frac{1}{2}, \Delta z_{O(1)}$ O(2) in (c): $\frac{1}{2}, 0, \frac{1}{2} + \Delta z_{O(2)}; 0, \frac{1}{2}, \frac{1}{2} + \Delta z_{O(2)}$.

It is assumed that the structure can be completely described in terms of 12 parameters – three position

^{*} A suitable average of the two values currently accepted $b(\text{Ti}) = -0.34 \pm 0.02 \times 10^{-12}$ cm (Shull, Wilkinson & Mueller, 1960), $b(\text{Ti}) = -0.37 \pm 0.01 \times 10^{-12}$ cm (Brookhaven National Laboratory, 325, 1968).

parameters z_{T1} , $z_{O(1)}$, $z_{O(2)}$ and nine temperature parameters, two for each of Ba, Ti, and O(1), and three for O(2).

Table 1 shows the reliability indices of Evans's two 12-parameter models (E_1, E_2) (Evans, 1961) and the 12-parameter model of Danner *et al.* (1960) calculated with the present X-ray and neutron data. From this Table it appears that the model of Frazer *et al.* is the most reliable of the three.

Table 1. R values for Evans's two models (E_1, E_2) and the model of Frazer et al. (F)

	X-rays	Neutrons
E_1	0.037	0.087
E_2	0.030	0.089
F	0.039	0.02

In the case of the X-ray data, the reliability indices of the three models are almost the same. This indicates that it is not possible to distinguish between them by using only X-ray diffraction techniques (Shirane, Jona & Pepinsky, 1955; Shirane & Jona, 1962). A closer look at the models, however, shows that the differences are mainly in the oxygen parameters, the accurate values of which cannot be determined from the X-ray data, because the oxygen contribution to the X-ray structure factors is almost negligible, especially at high scattering angles.

In the case of neutron diffraction there is no such problem with the oxygen parameters, since in this case the scattering lengths of the three atoms are approximately equal. The different circumstances of scattering power and form factors do not, however, as may be expected, prevent the coupling of the parameters. Calculation of the correlation matrix for the 12-parameter model of Frazer *et al.* using the present neutron data indicated strong correlation between z_{Ti} and all β_{33} parameters including β_{33} (Ba) (Danner *et al.*, 1960) as well as correlation between the three position parameters z_{Ti} , $z_{O(1)}$, and $z_{O(2)}$. The coupling of the parameters cannot be eliminated or avoided simply by changing the structure analysis technique (Evans, 1961) but it may be reduced by using two different types of diffraction data: X-ray data from which the Ba and Ti parameters can be determined fairly accurately in combination with neutron data which is very sensitive to the oxygen position parameters.

Analysis of the experimental data

Assumption

Because of the parameter-interaction problem, before any refinement of the experimental data is attempted, it is essential that some limiting assumptions concerning the temperature parameters be made. From a study of the X-ray thermal diffuse scattering of BaTiO₃ (Harada & Honjo, 1967) it was noted that contributions to the temperature parameter of the kth atom along the c axis, $\beta_{33}(k)$, come mainly from the acoustic vibrations $(\beta_{xx} = B_{xx} \times \frac{1}{4}d^2$ where d is the lattice spacing). For these vibrations, the actual frequency distribution may, to a first approximation, be replaced by a Debye continuous model in which the temperature parameters are independent of mass. We therefore felt justified in assuming that the $\beta_{33}(k)$ temperature parameters were approximately the same for all the atoms, an assumption warranted by reference

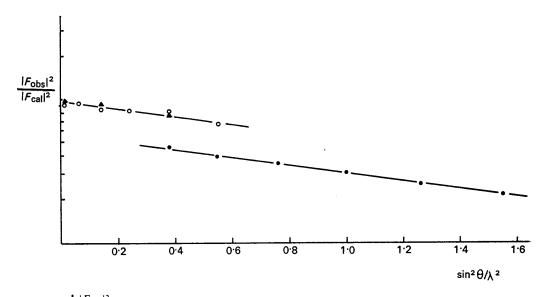


Fig. 1. Graph of $\log_{e}^{1} \frac{|F_{obs}|^2}{|F_{cal}|^2} vs. (\sin^2 \theta)/\lambda^2$, where F_{cal} is based on the present model not corrected for thermal motion. \bigcirc Neutron intensities from crystal C4, \blacktriangle neutron intensities from crystal CJ, \blacklozenge X-ray intensities. For clarity, the two plots have been displaced with respect to one another along the ordinate axis.

to the individual temperature parameters of other substances (e.g. KCl, RbCl, CsCl, CsI) for which the frequencies of the acoustic vibrations are very much less than those of the optic vibrations.

The particularly large contribution from the lowfrequency transverse optic vibrations as well as the acoustic vibrations in the case of the $\beta_{11}(k)$ temperature parameters (Harada & Pedersen, 1968) indicates that in general $\beta_{11}(k) \neq \beta_{33}(k)$. The use of isotropic temperature parameters may therefore not be satisfactory even in the initial stages of the refinement.

Analysis

As very little is known about the individual $\beta_{11}(k)$ temperature parameters, attention was first focused on the 00*l* type reflexions. With the assumption that $\beta_{33}(k)$ =constant, the number of parameters to be determined from these reflexions is reduced to five.

A reasonable value of z_{Ti} was first obtained from the 00/X-ray data, as for these data the contribution of the oxygen atoms to the intensity is very small, particularly in the case of the weak reflexions which are of the form f(Ba)-f(Ti)+f[O(1)]-2f[O(2)]. Keeping z_{Ti} fixed at the X-ray value, refinement of the neutron 00/ data yielded the oxygen parameters. These were then used in the X-ray data to obtain a more accurate value of z_{Ti} which was in turn used to obtain more accurate oxygen parameters from the neutron data.

Initially β_{33} was kept constant at 0.0044 corre-

sponding to $B_{33} = 0.29$ Å² (Harada & Pedersen, 1968), but the whole procedure was repeated with values of β_{33} varying from 0.0031 to 0.0054, until a model was found which gave satisfactory agreement between the neutron and X-ray results. Figs. 1 and 2 show a plot of $\log_{e} |F_{obs}|^2 / |F_{calc}|^2 vs. (\sin^2 \theta) / \lambda^2$ for the present model and also for the models of Frazer *et al.* and Evans for comparison.

Having obtained scale factors, z parameters and β_{33} from the 00/ reflexions, the full data were used to determine the $\beta_{33}(k)$ parameters. Approximate values of these were obtained from trial calculations of the hk0neutron data which were followed by least-squares refinement, keeping the scale factor constant at all times, as this constitutes the major interaction problem. (It was impossible to obtain oxygen β_{11} parameters from the X-ray data because of the limited number and type of the X-ray reflexions – mainly h0l with small h.)

Refining the X-ray and neutron data independently, the z parameters, scale factors and β_{33} were redetermined using the full set of data. This was done by first varying the z parameters and keeping β_{33} constant, then varying all β_{33} keeping the z parameters constant. The whole process was then repeated from the determination of the $\beta_{11}(k)$ to the z parameters and β_{33} . Finally all parameters were varied to obtain the correlation matrices (see Appendix). The result of the analysis is shown in Table 2.

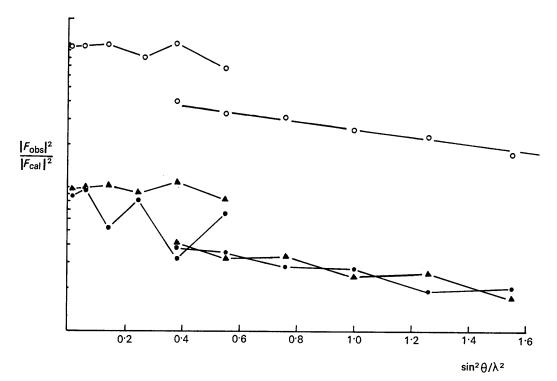


Fig. 2. The same as Fig. 1 for Evans's two models and the model of Frazer *et al.* ● Evans's model 1, ▲ Evans's model 2, ○ model of Frazer *et al.*

	Theor	retical*	X-rays	Neutrons	Frazer et al.	Evans (1)	Evans (2)
AzTi			0.0135 ± 0.0004	0.0135	0.013	0.012	0.012
⊿zO(1)			-0.024 ± 0.001	-0.0250 ± 0.0004	-0.023	-0.024	-0.026
$\Delta z O(2)$			-0.0150 ± 0.0009	-0.0150 ± 0.0003	-0.013	-0.050	0.0
B_{33} (Å ²) Ba	0.29	0.21	0.32 ± 0.007	0.34 ± 0.04	0.37	0.28	0.28
Ti	0.29	0.21	0.32 ± 0.02	0.33 ± 0.04	0.42	0.21	0.30
O(1)	0.29	0.21	0.32	0.32 ± 0.03	0.40	0.08	0.20
O(2)	0.29	0.21	0.32	0.33 ± 0.03	0.42	0.07	0.90
B_{11} (Å ²) Ba			0.51 ± 0.06	0.53 ± 0.06	0.31	0.27	0.27
Ti			0.30 ± 0.2	0.27 ± 0.06	0.67	0.53	0.46
O(1)			0.57	0.57 ± 0.06	0.45	0.90	0.90
O(2)			0.67	0.67 ± 0.01	0.62	0.60	0.60
B_{22} (Å ²) O(2)			0.56	0.56 ± 0.01	0.45	0.49	0.90
R			0.024	0.027			
wR			0.028	0.026			
<i>S</i> †			0.35	2.96			

Table 2. Crystal structure models proposed for tetragonal BaTiO₃

* Left-hand column corresponds to the case of constant *E*, the right-hand column corresponds to constant *P*. † $S = \frac{1}{N - M} \sum w |F_{obs} - F_{calc}|^2$ where w = 1 for X-rays and $1/\sigma_{obs}^2$ for neutrons; *N* is the number of observations and *M* is the number of variable parameters.

			he neutron			T	able 3 (con	<i>t</i> .)	
lengths of E				(R=0.027)			CJ		C4
wR = 0.022,	S = 2.51)	vere obtain	ed with		hkl	F(obs)	F(calc)	F(obs)	F(calc)
l	b(Ba) = 0.52	$2 \pm 0.001*$	$\times 10^{-12}$ cm.		301	0.394	0.391		
			$\times 10^{-12}$ cm.		302	0.384	0.377		
	• •				303	0.356	0.347		
			nd observed	structure	304	0.522	0.519		
factors for	the neutror	n diffraction	n.		401	0.286	0.294	0.281	0.294
					402	1.550	1.570	1.667	1.577
* This is i	n agreement	with the val	lue obtained	by Cooper.	403	0.292	0.290	0.290	0.291
Rouse & Wi				o, ooopo,	404	1.371	1.508	1.428	1.515
			_		110	0.398	0.402	0.395	0.404
Table 3.	Calculated	and observ	ved structu	re factors	120	0.288	0.289	0.276*	0.290
(a) Neutron	n diffraction	for cryst	als CJ and	CA	130	0.382	0.380	0.374	0.382
(4) 11041101	u unnaction	1, 101 Crysta		C 4	140	0.285	0.271	0.265	0.273
* Denote	es reflexions	omitted in th	ne structure a	nalysis.	150	0.326	0.340	0.311	0.342
	C		C	4	210	0.286	0.289	0.275*	0.290
hkl	F(obs)	F(calc)	F(obs)	F(calc)	220	1.353*	1.718	1.256	1.726
010	0.291	0.295	0.276*	0.296	230	0.279	0.290	0.280	0.291
020	1.300*	1.786	1.150*	1.794	240	1.356*	1.529	1.229*	1.536
030	0.289	0.296	0.283	0.297	250	0.277	0.289	0.296	0.290
040	1.339*	1.590	1.111*	1.597	250	0211	0207	0 270	0 270
050	0.295	0.295	0.261	0.297	310	0.382	0.380	0.374	0.382
060	1.203*	1.308	0 201	0 277	320	0.279	0.290	0.279	0·291
000	1 205	1 500			330	0.347	0.359	0.348	0.361
001	0.305	0.295	0.293	0.295	340	0.278	0.272	0.240	0 501
001	1.532*	1.831	1.890	1.839	540	0.278	0-272		
002	0.312	0.296	0.299	0.297	410	0.263	0.271		
	1.694*	1.753	1.781	1.761	410	1.371*	1.529		
004									
005	0.319	0.309	0.324	0.311	430	0.278	0.272		
006	1.601	1.608	1.630	1.626	440	1.106*	1.360		
101	0.420	0.401	0.428	0.403	111	1.909*	2.497	2.505	2.508
102	0.390	0.386	0.399	0.387	112	0.404	0.396	0.389	0.398
103	0.378	0.357	0.387*	0.359	113	1.836*	2.340	2.280	2.350
104	0.554	0.542	0.543	0.544	114	0.372	0.377	0.365	0.378
105	0.301	0.291	0.286	0.292	115	1.952*	2.053	2.065	2.063
201	0.295	0.295	0.292	0.296	221	0.292	0.295	0.295	0.295
202	1.580*	1.762	1.886	1.770	222	1.585*	1.696	1.795	1.703
203	0.287	0.294	0.298	0.296	223	0.293	0.293	0.295	0.294
204	1.602*	1.688	1.729	1.696	224	1.510*	1.626	1.520	1.633
205	0.304	0.305	0.300	0.306	225	0.306	0.301	0.278	0.302
	· · ·	,							

.

Table 3 (cont.)

Table 3 (cont.)
F(obs)

14.07

15.25

9.85

10.76

7.01

18.90

9.32

13.94

6.89

12.79

14.64

9.21

9.95

16.11

8.12

h k l

1 10 1

> 2 8

3 1

4 1

9

8

2 9 1

1 17

1 1 8

1 19

1 1 11

1 2 7

1

1 2 10

1 3 7

1 3 8

1 3 10

1 4 7

	(CJ	C	24
hkl	F(obs)	F(calc)	F(obs)	F(calc)
331	1.900*	2 ·194	2.223	2.205
332	0.352	0.354	0.359	0.356
333	1.758*	2.056	2· 001	2.064
121	0.401	0.389	0.404	0.391
122 123	0·386 0·361	0·376 0·346	0.390	0.378
123	0.501	0.346	0·341 0·512*	0.347
124	0·328 0·286	0.328	0.512*	0.531
125	0.790	0.279	0.792	0.281
131	2.000*	2.341	2.450	2.352
132	0.390	0.374	0.376	0.376
133	1.851*	2·193	2.200	2.202
134	0.350	0.356		
141	0.347	0.356	0.224*	0.357
141	0.347	0.356	0·334* 0·364	0·357 0·353
142	0.303	0.313	0.304	0·353 0·314
144	0.487	0.490	0.302	0.314
144	0 407	0 490		
151	1.828	2.060	2.150	2.068
152	0.352	0.336	0.323	0.338
231	0.385	0.379	0.378	0.381
232	0.369	0.368	0.369	0.370
233	0.000*	0.336	0.000*	0.337
234	0.499	0.506	0.510	0.509
	0 122	0.000	0 510	0 507
241	0.303	0.293	0.275*	0.294
242	1.558	1.511	1.558	1.518
243	0.302	0.288		
251	0.329	0.360	0.322	0.361
252	0.348	0.351	0.350	0.353
-	0 0 10	0.001	0 330	0.555
341	0.315	0.348	0.316	0.349
342	0.352	0.343	0.350	0.344

Table 3 (cont.)

(b) Calculated and observed structure factors (X-rays)

h k l	F(obs)	F(calc)
0 0 5	15.42	14.77
0 0 6	27.17	27.11
007	10.93	10.33
0 0 8	18.58	18.26
0 0 9	8.00	7.91
0 0 10	12.14	12.17
1 0 8	9.99	9.68
109	13.85	14.31
1 0 10	7.23	7.63
1 0 11	8.87	9.75
2 0 7	9.82	9.86
$ \begin{array}{cccc} 2 & 0 & 7 \\ 2 & 0 & 8 \\ 2 & 0 & 9 \end{array} $	17.10	17.35
2 0 9	7.67	7.51
$\begin{array}{ccccc} 3 & 0 & 7 \\ 3 & 0 & 8 \\ 3 & 0 & 9 \\ 3 & 0 & 10 \end{array}$	18.10	17.87
3 0 8	8.21	8.67
309	11.99	13.05
3 0 10	6.65	6.94
4 0 7	8.68	8.21
4 0 8	15.34	14.95
409	6.69	6.53
4 0 10	10.28	10.17

1		9	8·12 11·85	7.78
1		10	6.25	11.95
1	-	10	0.23	6.32
2	2	7	9.95	9.27
2	2	8	16.40	16.49
2 2 2 2	2	9	7.36	7.16
2	2	7 8 9 10	10.75	11.12
2	3 3 3 3	7	17.17	16.97
2 2 2 2 2	3	8	8.60	8.21
2	3	9	12.43	12.49
2	3	10	6.61	6.63
2	4	7	8.28	7.78
2 2 2 2 2	4	8	14.47	14.24
2	4		6.64	6.23
2	4	10	9.48	9.73
3 3 3 3	3 3 3 3	7	11.08	11.02
3	3	8	13.27	13.10
3	3	9	8∙49	8.37
3	3	10	8.70	9.38
Because o	f tł	ie d	iffering quality o	f the two faces of
the crystal u	isec	l fo	r the X-ray mea	surements, no at-
tempt was m	ade	e to	determine the pol	arity of the crystal
experimental	111	In	stead calculation	as with Cromer's
(1065) dispa	ny.	111	sical, calculation	is with Cromer's
(1905) dispe	rsic	on c	orrections were o	carried out in the
last stages of	the	ret	inement of the X-1	ay data, assuming
that all the <i>l</i> :	ind	ices	were positive or r	negative, as well as
a calculation	in	whi	ch it was assumed	that fifty per cent
of the crysta	al f	ace	consisted of 001	domains and the
other fifty ne	1 	ant	of 001 domains 7	The letter and the
tion and the	40	ont	or our domains.	The latter assump-
uon and the	ass	sum	puon that all l ir	dices are positive
vielded essen	itial	lv t	he came regulte +1	ha atam da

yielded essentially the same results, the standard errors being somewhat lower when all *l* indices were assumed to be positive. The assumption that all l indices are negative resulted in larger standard errors and a slightly higher value of the reliability indices. Tables 2 and 3(b) list the results obtained when it was assumed that all *l* indices are positive.

Although our model was obtained by assuming the individual β_{33} temperature parameters of all the atoms to be approximately equal, it can be shown that the analysis is to some extent independent of this initial

F(calc)

13.96

15.84

10.20

11.14

7.34

18.84

9.16

13.65

7.27

12.44

14.39

9.23

10.21

16.12

7.78

	A ⊿z _{Ti} =		В ⊿z _{тi} =		С ⊿zті=	0·014	D ⊿z _{Ti} =0		E ⊿z _{Ti} =		F ⊿z _{Ti} =	
	Х	Ν	Х	Ν	X	N	Х	Ν	Х	Ν	X	Ν
$B_{33} (\text{\AA}^2) Ba$ Ti O(1) O(2)	0·33 0·19 0·44 0·57	0·52 0·34 0·27 0·34	0·33 0·24 0·40 0·57	0·48 0·34 0·29 0·34	0·33 0·29 0·34 0·57	0·42 0·34 0·30 0·33 0·027	0·32 0·31 0·33 0·54 0·023	0·34 0·33 0·32 0·33 0·027	0·32 0·33 0·31 0·54 0·023	0·34 0·33 0·32 0·33 0·027	0·32 0·38 0·28 0·54 0·023	0·32 0·35 0·33 0·32 0·028
R wR S	0·024 0·027 0·34	0·028 0·027 2·97	0·024 0·027 0·34	0·027 0·026 2·96	0·024 0·027 0·34	0.027 0.026 2.96	0.023 0.027 0.34	0.027 0.026 2.96	0.023 0.027 0.34	0.027 0.026 2.96	0.023 0.027 0.34	0.028 0.026 2.97

Table 4. The effect of different values of z_{T1} on the B_{33} temperature parameters for the X-ray (X) and neutron (N) diffraction data

assumption. As an example, Table 4 shows the effect of different values of z_{Ti} on the β_{33} parameters. Model D with equal values of the individual temperature parameters is the only model which yields consistent results for both X-rays and neutrons, in agreement with our previous conclusion.

Discussion

Table 4 summarizes the present model, previous models and the results of the theoretical calculations. Table 5 lists the atomic shifts and bond distances in Ångstrom units.

Table 5. Atomic shifts and bond distances

Bond le	engths	Atomic	shifts
Ti -O(1)	2·1720 Å	⊿ z (Ti)	0∙0544 Å
Ti - O(2)	2.0300	⊿z [O(1)]	0.1008
Ba-O(1)	2.8425	⊿z [O(2)]	0.0617
Ba - O(2)	2 ·7948		

In view of the fact that we have only used X-ray intensities obtained at high 2θ angles no knowledge of the exact ionic state of the atoms was required.

From Table 2, we see that the theoretical calculation gives two different values for the temperature parameters corresponding to the two different values of the elastic constants, constant electric field E and constant polarization P. For the condition P = const. to be fulfilled, the crystal must be completely insulated, as is the case for substances like KDP where the ferroelectric phase occurs at such low temperatures that both the crystal and the surrounding medium can be considered to be perfect insulators (Shirane & Jona, 1962). In BaTiO₃, however, this is no longer the case. It is not yet certain which elastic constants correspond more closely to the acoustic phonon dispersion curve at wave number q=0. The present results, $B_{33}=0.32\pm$ 0.03 for X-rays and 0.33 ± 0.04 Å² for neutrons, are very close to the theoretically expected value $(B_{33} =$ 0.29 Å^2) using E = const. = 0.

Previously it was expected from the experimental results of Evans (1961) and Danner et al. (1960) that

the contribution of the optic vibrations to the temperature parameters of the heavy atoms would be very small. The present analysis, however, shows that $\beta_{11}(Ba) > \beta_{11}(Ti)$.

Calculation of $\sum_k m_k B(k)$, where m_k is the mass of the kth atom, for the B_{11} temperature parameters gives $\overline{B_{11}} = 0.50 \text{ Å}^2$ which is slightly lower than the value expected from the theoretical calculations (0.70 Å²) (Harada & Pedersen, 1968).

The model that we propose was obtained by leastsquares refinement of both X-ray and neutron data. [No attempt has been made to correct the data for TDS, the effect of which is apparently similar in the two techniques (Coppens, 1968).] Because of the high correlation between some parameters, it would appear that the structure of BaTiO₃ cannot be reliably solved by either neutron or X-ray diffraction alone. Inspection of the correlation matrices (see Appendix) shows that there are in the case of X-rays seven, and in the case of neutrons ten, elements greater than 0.8. Except for one instance (where correlation is avoided through our initial assumption that the β_{33} are independent of atomic mass) these are different elements in the case of X-rays and neutrons – where the neutron data exhibit strong correlation, the correlation in the X-ray data is small and vice versa.

It is possible to obtain a slightly different model with a somewhat lower R value (R=0.022) from the X-ray data, but since this model differs in the $\beta_{33}(O)$ parameters only, the difference is not significant. This model can furthermore be rejected by testing it with the neutron data (R=0.035).

The present structure analysis is based on the assumption that tetragonal barium titanate can be described in terms of the previously listed 12 parameters. An alternative model has very recently been proposed by Comes, Lambert & Guinier (1968) in which the tetragonal phase of barium titanate is regarded as a partially disordered phase of the rhombohedral structure. They suggest that the difficulties encountered in solving the tetragonal structure may arise from a wrong assignment of structure parameters. This does not take into account Geller's considerations (Geller, 1961) which indicate that the structure is difficult to solve because of the high correlation between some of the

X	,
è	,
Ē	
Ы	
\mathbf{A}	

Correlation matrix from BaTiO₃ least-squares calculation for X-ray and neutron diffraction data

	data	2	
	ç	3	
•	ċ	5	
	200	all's action	
s	2	-	
•	f	-	
	7	3	
	ŝ	v - a h	
	š	2	
١,		Γ.	
	-	c	
		٦	
	I	1	
	I	l	
•	I	l	
•	I	l	
	I	l	
•	matrix	l	
	1 matrix _	· I VI IIMIII I	
	1 matrix _	· I VI IIMIII I	
	1 matrix _	· I VI IIMIII I	
	1 matrix _	· I VI IIMIII I	
	1 matrix _	· I VI IIMIII I	
	1 matrix _	· I VI IIMIII I	
	I	· I VI IIMIII I	

	U.	$\widetilde{\beta}_{11}(Ba)$	$\beta_{33}(Ba)$	Bu(Ti)	$\beta_{33}(Ti)$	z0(1)	$\beta_{11}[O(1)]$	$\beta_{33}[O(1)]$	$\beta_{11}[O(2)]$ $\beta_{22}[O(2)]$	β ₃₃ [O(2)]			Si	S_2	$\beta_{11}(Ba)$	$\beta_{33}(Ba)$	IT'	β11(Ti)	$\beta_{33}(Ti)$	z0(1)	$\beta_{11}[O(1)]$	β ₃₃ [O(1)]	zO(2)	$\beta_{11}[O(2)]$	P22[O(2)]	
Correlation matrix	$\beta_{33}[O(2)]$ 0-14	0.16	0.66	0.29	-0-84	0-58	-0.01	0-54	- 0.30	1-00		β ₃₃ [O(2)]	0-03	0-24	0-03	0-27	0.35	0.14	-0.15	0.14	00-0	-0.28	0.15	0-03		~~ -
	$\beta_{22}[O(2)]$	0.14	-0.16	-0.39	0-22	-0.15	-0.20	- 0.02	-0.34	- 0·34 1-00	β ₂₂ [O(2)]	-0-07	0.09	66-0	-0.19	-0.16	-0.16	-0.16	-0.18	0-98	0.04	0.05	0-99	0-1		
	$\beta_{11}[O(2)] = -0.01$	-0.07	-0.08	0.01	0.13	-0-00	0.08	-0.12 -0.14	1.00			β ₁₁ [O(2)]	-0-05	60-0	66-0	-0.19	-0.16	-0.15	-0.16	-0.17	0-98	0.04	0-02	1.00		
									1-00			<i>z</i> O(2)	0.10	0.23	0.04	-0.74	-0.56	0.26	-0.94	0-94	60-0	0.19	9			
	zO(2) 0-11	0.1.0	0 0 0	0.0	-0.8	0.6(00	0-			data	ß ₃₃ [O(1)]	-35	54	-03	-65	61.1	·13	9e	-01	-02	Ş				
	3 ₃₃ [O(1)] 0-37	0.48	0-52	-001	-0.57	0-57	-0.54	00.1			fraction	-										1				
	$\beta_{11}[O(1)]$ / -0.17	-63	ĢĢ	46	-04	-08	Ş				tron diff	$\beta_{11}[O(1)]$	-0.05	0.08	0.98	-0-21	-0·17	-0.05	-0.21	-0.14	1.00					
	$\beta_{11}[$ -0	0		0	1	0	1				nəu – x	zO(1)	0.10	0.13	-0-19	-0-57	-0.38	0.26	-0·88	1. 00						
	zO(1) 0·12	0-06	0-54 0-64	0.22	-0.62	1-00					Correlation matrix – neutron diffraction date	β ₃₃ (Ti)											-			
	$\beta_{33}(Ti) - 0.07$	0.12	0.76	0.38	Ş	8					Correlat															
	Ø	1		ł	-		r				U	$\beta_{11}(Ti)$	0-02	0.3]	-0.2]	- -	-0-1	i.								
	β ₁₁ (Ti) 0-04	-0.33	0-32	1. 0. 1								ZTi	-0.21	-0.38	-0.15	96-0	1.00									
	^{ZTI} 0-14	0-18	62-0 1-00									$\beta_{33}(Ba)$	-0.16	-0.31	-0.19	00-I										
	$\beta_{33}(Ba)$ 0.61	0.01	0.0								$\beta_{11}(Ba)$	-0.10	0.0	1.00												
	$\beta_{11}(Ba)$ 0-29	1-00									S2* 0.46 1.00															
	S 1-00											S_1^*	1.00													

* S_1 , S_2 scale factors for crystals CJ and C4 respectively.

parameters. While we cannot reject the proposal of Comes, Lambert & Guinier, the present analysis does show that it is in fact possible to determine the structure with reasonable accuracy when the correlation problem is avoided by the use of both X-ray and neutron diffraction data.

After this work was completed, the authors became aware of an unpublished refinement of a previous neutron diffraction analysis by Frazer (1962) with the following results:

The position parameters of this refinement are in excellent agreement with our results, but the temperature parameters are not. Use of the above values with our X-ray and neutron data results in higher values of the reliability indices than those obtained with our position and temperature parameters.

We would like to thank Professor J. M. Cowley for his encouragement of the present study. We are grateful to Dr B. C. Frazer for permission to use the unpublished results of his refinement of neutron data and for useful discussions. We would also like to thank the staff of the solid state group of the AAEC and the Neutron Diffraction Group of the A.I.N.S.E. for their assistance, and Dr M. Mackay of the Chemistry Department of the University of Melbourne for making available the ORFLS program.

Financial support from the A.I.N.S.E. is gratefully acknowledged.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- COMES, R., LAMBERT, M. & GUINIER, A. (1968). C. R. Acad. Sci. Paris, 266, 959.
- COOPER, M. J., ROUSE, K. D. & WILLIS, B. T. (1968). Acta Cryst. A24, 484.
- COPPENS, P. (1968). Acta Cryst. B24, 1272.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 105.
- DANNER, H. R., FRAZER, B. C. & PEPINSKY, R. (1960). Acta Cryst. 13, 1089.
- EVANS, H. T. (1951). Acta Cryst. 4, 377.
- EVANS, H. T. (1951). Acta Cryst. 14, 1019.
- FRAZER, B. C. (1962). J. Phys. Soc. Japan, Suppl. B-II, 376. FRAZER, B. C., DANNER, H. R. & PEPINSKY, R. (1955). Phys.
- Rev. 100, 745.
- GELLER, S. (1961). Acta Cryst. 14, 1026.
- HARADA, J. & HONJO, G. (1967). J. Phys. Soc. Japan, 22, 45.
- HARADA, J. & PEDERSEN, T. (1968). J. Phys. Soc. Japan, 25, 1314.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- KITTEL, C. (1963). Introduction to Solid State Physics. New York: John Wiley.
- RHODES, R. G. (1949). Acta Cryst. 2, 417.
- SHIRANE, G. & JONA, F. (1962). Ferroelectric Crystals. New York: Pergamon Press.
- SHIRANE, G., JONA, F. & PEPINSKY, R. (1955). Proc. Inst. Radio Engrs. N. Y. 43, 1738.
- SHULL, C. G., WILKINSON, M. K. & MUELLER, M. H. (1960). *Phys. Rev.* **118**, 797.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1970). A 26, 344

X-ray Diffraction from Hexagonal Close-Packed Crystal's with Deformation Stacking Faults. II. Effect of Change in Layer Spacing at Faults

BY SHRIKANT LELE

Department of Metallurgy, Banaras Hindu University, Varanasi, India

(Received 31 July 1969)

The Christian-Gevers theory of X-ray diffraction from hexagonal close-packed crystals with deformation stacking faults is extended to include the effect of change in layer spacing at the faults. The results show that integral breadths as well as integrated intensities remain unaffected to a first approximation. The principal effect is to introduce peak shifts, the magnitude and direction of which depend on the reflexion.

Introduction

Diffraction effects due to the presence of deformation stacking faults in h.c.p. crystals are predicted under the following assumptions (Christian, 1954; Gevers, 1954; Lele, Anantharaman & Johnson, 1967):

 the crystal is infinite in size and is free from distortions;